

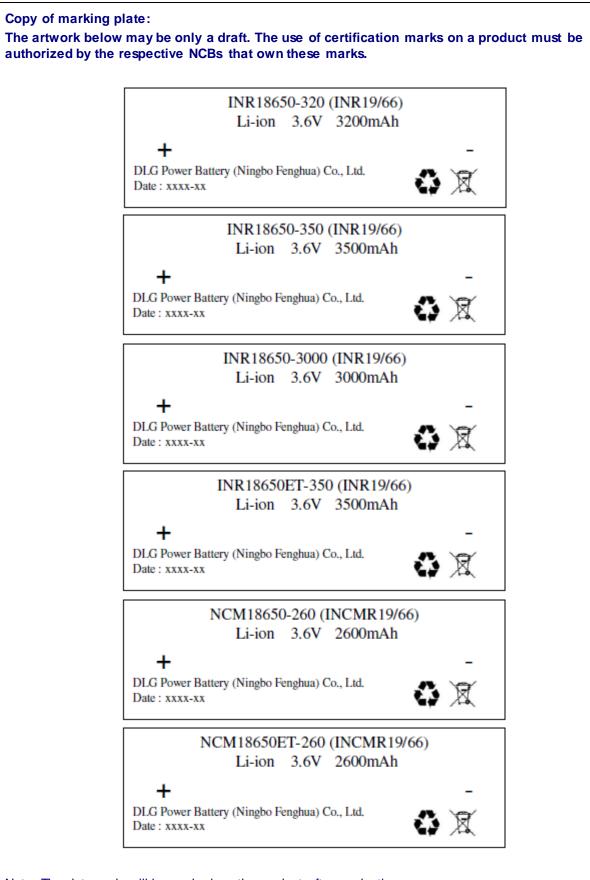
Test Report issued under the responsibility of:

TEST REPORT IEC 62133-2 Secondary cells and batteries containing alkaline or other non-acid electrolytes – Safety requirements for portable sealed secondary cells, and for batteries made from them, for use in portable applications – Part 2: Lithium systems

Report Number:	SHES190902342201			
Date of issue:	2019-10-25			
Total number of pages::	37 Pages			
Name of Testing Laboratory preparing the Report:	SGS-CSTC Standards Technical (Shanghai) Services Co., Ltd.			
Applicant's name:	DLG Power Battery (Ningbo Fenghua) Co., Ltd.			
Addre ss:	No.3, Xinghai Road, Binhai New Area, Fenghua District, Ningbo, Zhejiang, P.R. China			
Test specification:				
Standard:	IEC 62133-2:2017			
Test procedure::	CB Scheme			
Non-standard test method::	N/A			
Test Report Form No:	IEC62133_2A			
Test Report Form(s) Originator :	SGS-CSTC			
Master TRF:	Dated 2017-08-10			
Copyright © 2017 IEC System of Con Equipment and Components (IECEE	nformity Assessment Schemes for Electrotechnical System). All rights reserved.			
This publication may be reproduced in w hole or copyright ow ner and source of the material. IECE from the reader's interpretation of the reproduce	in part for non-commercial purposes as long as the IECEE is acknow ledged as E takes no responsibility for and will not assume liability for damages resulting ad material due to its placement and context.			
If this Test Report Form is used by nor CB Scheme procedure shall be remove	n-IECEE members, the IECEE/IEC logo and the reference to the ed.			
This report is not valid as a CB Test Report unless signed by an approved CB Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02.				
General disclaimer:				
	relate only to the object tested. cept in full, without the written approval of the Issuing CB Testing t Report and its contents can be verified by contacting the NCB,			

responsible for this Test Report.

Disclaimer: This document is controlled and has been released electronically. Only the version on the IECEE Website is the current document version


			argeable Li-ion Cell		
Trade Mark:					
Manufacturer: Same			as applicant		
Mode	el/Type reference:	INR186	650-320, INR18650-350,	INR18650-3000, INR18650ET-350	
		NCM18	3650-260, NCM18650ET-	260	
Ratir	igs:	See pa	ige 6		
Resp	onsible Testing Laboratory (as a	pplical	ble), testing procedure	and testing location(s):	
	CB Testing Laboratory:		National Center of Supe Photovoltaic Products C	ervision & Inspection on Solar Quality	
Testi	ng location/ address	:	Suite A-10F, Innovation Xinhua Road, WND, W	& Creation Science Park, #5 uxi, Jiangsu, P.R. China	
Teste	ed by (name, function, signature).	:	Kiserrin Chen / Project Engineer	lisemin	
Appr	oved by (name, function, signatur	e):	Eric Wang / Project Reviewer	7. 8	
	Testing procedure: CTF Stage 1:		N/A		
Test					
resti	ng location/ address				
Teste	ed by (name, function, signature).	:			
Appr	oved by (name, function, signatur	e):			
	Testing procedure: CTF Stage 2:		N/A		
Tocti	ng location/ address				
1630					
Teste	ed by (name + signature)	:			
Witn	essed by (name, function, signatu	re):			
Appr	oved by (name, function, signatur	e):			
_ 1					
	Testing procedure: CTF Stage 3:		N/A		
	Testing procedure: CTF Stage 4:		N/A		
Testi	ng location/ address	:			
Teste	ed by (name, function, signature).	:			
Witn	essed by (name, function, signatu	re):			
Appr	oved by (name, function, signatur	e):			
Supe	ervised by (name, function, signate	ure):			
				1	

Page 3 of 37 Report No. SHES190902342201 List of Attachments (including a total number of pages in each attachment): Attachment 1: 3 pages of Photos; Attachment 2: 1 page of Information for safety; Attachment 3: 1 page of Packaging; Attachment 4: 6 pages of Product specification; Attachment 5: 1 page of ISO9001 certificate. Summary of testing: The sample(s) tested complies with the requirements of IEC 62133-2: 2017. When determining the test conclusion, the Measurement Uncertainty of test has been considered. Remark: Model INR18650-320, INR18650-350, INR18650-3000, INR18650ET-350, NCM18650-260 and NCM18650ET-260 were subjected to full tests as far as applicable. Tests performed (name of test and test **Testing location:** clause): National Center of Supervision & Inspection on 5.2 Insulation resistance Solar Photovoltaic Products Quality ⊠7.2.1 Continuous charging at constant voltage Suite A-10F, Innovation & Creation Science Park, #5 Xinhua Road, WND, Wuxi, Jiangsu, P.R. China (cells) 7.2.2 Case stress at high ambient temperature (battery) ☑ 7.3.1 External short circuit (cell) 7.3.2 External short circuit (battery) ⊠7.3.3 Free fall \boxtimes 7.3.4 Thermal abuse (cells) \boxtimes 7.3.5 Crush (cells) 7.3.6 Over-charging of battery ⊠7.3.7 Forced discharge (cells) 7.3.8. Mechanical tests (batteries) ⊠7.3.9 Design evaluation – Forced internal short circuit (cells) Annex D Measurement of the internal AC resistance for coin cells Summary of compliance with National Differences (List of countries addressed):

The product fulfils the requirements of EN 62133-2:2017

Note: The date code will be marked on the product after production.

Test item particulars:	
Classification of installation and use:	
Supply Connection:	
Recommend charging method declared by the manufacturer:	
Discharge current (0,2 It A):	2600 mAh: 520 mA; 3000 mAh: 600 mA 3200 mAh: 640 mA; 3500 mAh: 700 mA
Specified final voltage:	See page 6 for details
Upper limit charging voltage per cell: :	4,2 V
Maximum charging current:	See page 6 for details
Charging temperature upper limit:	45 °C
Charging temperature lower limit:	0°C
Polymer cell electrolyte type:	☐ gel polymer ☐ solid polymer ⊠N/A
Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	P (Pass)
- test object does not meet the requirement:	F (Fail)
Testing:	
Date of receipt of test item:	2019-09-11
Date (s) of performance of tests:	2019-09-11 to 2019-09-24

General remarks:

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(See Enclosure #)" refers to additional information appended to the report.

"(See appended table)" refers to a table appended to the report.

Throughout this report a \boxtimes comma / \square point is used as the decimal separator.

This document is issued by the Company under its General Conditions of service accessible at <u>http://www.sgs.com/terms and conditions.htm</u> attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 1 months only. This document cannot be reproduced except in full, without prior approval of the Company.

lanufacturer's Decla	aration per	sub-clause 4.	2.5 of IECEE 02	:		
The application for obt ncludes more than on declaration from the M sample(s) submitted for epresentative of the p been provided	e factory loc lanufacturer or evaluation roducts from	ation and a stating that the is (are) each factory	e Not aj	oplicable		
Vhen differences ex	ist; they sha	all be identifie	ed in the Genera	al product info	ormation section	on.
Seneral product info			rks:	Maximum	Maximum	Cut-off
General product info	Rated voltage	Rated capacity	rks: Designation	Maximum charge current	Maximum discharge current	Cut-off voltage
	Rated	Rated		charge	discharge	
Model	Rated voltage	Rated capacity	Designation	charge current	discharge current	voltage
Model INR18650-320	Rated voltage 3,6 V	Rated capacity 3200 mAh	Designation INR19/66	charge current 3200 mA	discharge current 9600 mA	voltage 2,5 V
Model INR18650-320 INR18650-350	Rated voltage 3,6 V 3,6 V	Rated capacity 3200 mAh 3500 mAh	Designation INR19/66 INR19/66	charge current 3200 mA 3500 mA	discharge current 9600 mA 10500 mA	voltage 2,5 V 2,5 V
Model INR18650-320 INR18650-350 INR18650-3000	Rated voltage 3,6 V 3,6 V 3,6 V	Rated capacity 3200 mAh 3500 mAh 3000 mAh	Designation INR19/66 INR19/66 INR19/66	charge current 3200 mA 3500 mA 3000 mA	discharge current 9600 mA 10500 mA 9000 mA	voltage 2,5 V 2,5 V 2,5 V 2,5 V

Page 7 of 37

Report No. SHES190902342201

	IEC 62133-2		
Clause	Requirement + Test	Result - Remark	Verdict

4	PARAMETER MEASUREMENT TOLERANCES		Р
	Parameter measurement tolerances		Р

5	GENERAL SAFETY CONSIDERATIONS		Р
5.1	General		Р
	Cells and batteries so designed and constructed that they are safe under conditions of both intended use and reasonably foreseeable misuse		Р
5.2	Insulation and wiring		N/A
	The insulation resistance between the positive terminal and externally exposed metal surfaces of the battery (excluding electrical contact surfaces) is not less than 5 M Ω		N/A
	Insulation resistance (MΩ):		—
	Internal wiring and insulation are sufficient to withstand maximum anticipated current, voltage and temperature requirements		N/A
	Orientation of wiring maintains adequate clearance and creepage distances between conductors		N/A
	Mechanical integrity of internal connections accommodates reasonably foreseeable misuse		N/A
5.3	Venting		Р
	Battery cases and cells incorporate a pressure relief mechanism or are constructed so that they relieve excessive internal pressure at a value and rate that will preclude rupture, explosion and self-ignition	A pressure relief mechanism used to relieve excessive internal pressure.	Р
	Encapsulation used to support cells within an outer casing does not cause the battery to overheat during normal operation nor inhibit pressure relief		N/A
5.4	Temperature, voltage and current management		N/A
	Batteries are designed such that abnormal temperature rise conditions are prevented		N/A
	Batteries are designed to be within temperature, voltage and current limits specified by the cell manufacturer		N/A
	Batteries are provided with specifications and charging instructions for equipment manufacturers so that specified chargers are designed to maintain charging within the temperature, voltage and current limits specified		N/A
5.5	Terminal contacts		Р
	The size and shape of the terminal contacts ensure that they can carry the maximum anticipated current		Р

Г

Report No. SHES190902342201

	IEC 62133-2		
Clause	Requirement + Test	Result - Remark	Verdict
		1	
	External terminal contact surfaces are formed from conductive materials with good mechanical strength and corrosion resistance		Р
	Terminal contacts are arranged to minimize the risk of short-circuit		Р
5.6	Assembly of cells into batteries		N/A
5.6.1	General		N/A
	Each battery have an independent control and protection for current, voltage, temperature and any other parameter required for safety and to maintain the cells within their operating region		N/A
	This protection may be provided external to the battery such as within the charger or the end devices		N/A
	If protection is external to the battery, the manufacturer of the battery provide this safety relevant information to the external device manufacturer for implementation		N/A
	If there is more than one battery housed in a single battery case, each battery have protective circuitry that can maintain the cells within their operating regions		N/A
	Manufacturers of cells specify current, voltage and temperature limits so that the battery manufacturer/designer may ensure proper design and assembly		N/A
	Batteries that are designed for the selective discharge of a portion of their series connected cells incorporate circuitry to prevent operation of cells outside the limits specified by the cell manufacturer		N/A
	Protective circuit components added as appropriate and consideration given to the end-device application		N/A
	The manufacturer of the battery provide a safety analysis of the battery safety circuitry with a test report including a fault analysis of the protection circuit under both charging and discharging conditions confirming the compliance		N/A
5.6.2	Design recommendation		N/A
	For the battery consisting of a single cell or a single cellblock, it is recommended that the charging voltage of the cell does not exceed the upper limit of the charging voltage specified in Table 2		N/A

Report No. SHES190902342201

Page 9 of 37

IEC 62133-2

Clause	Requirement + Test	Result - Remark	Verdict
	For the battery consisting of series-connected plural single cells or series-connected plural cellblocks, it is recommended that the voltages of any one of the single cells or single cellblocks does not exceed the		N/A
	single cells or single cellblocks does not exceed the upper limit of the charging voltage, specified in Table 2, by monitoring the voltage of every single cell or the single cellblocks		
	For the battery consisting of series-connected plural single cells or series-connected plural cellblocks, it is recommended that charging is stopped when the upper limit of the charging voltage is exceeded for any one of the single cells or single cellblocks by measuring the voltage of every single cell or the single cellblocks		N/A
	For batteries consisting of series-connected cells or cell blocks, nominal charge voltage not be counted as an overcharge protection		N/A
	For batteries consisting of series-connected cells or cell blocks, cells have closely matched capacities, be of the same design, be of the same chemistry and be from the same manufacturer		N/A
	It is recommended that the cells and cell blocks not discharged beyond the cell manufacturer's specified final voltage		N/A
	For batteries consisting of series-connected cells or cell blocks, cell balancing circuitry incorporated into the battery management system		N/A
5.6.3	Mechanical protection for cells and components of batteries		N/A
	Mechanical protection for cells, cell connections and control circuits within the battery provided to prevent damage as a result of intended use and reasonably foreseeable misuse		N/A
	The mechanical protection can be provided by the battery case or it can be provided by the end product enclosure for those batteries intended for building into an end product		N/A
	The battery case and compartments housing cells designed to accommodate cell dimensional tolerances during charging and discharging as recommended by the cell manufacturer		N/A
	For batteries intended for building into a portable end product, testing with the battery installed within the end product considered when conducting mechanical tests		N/A
5.7	Quality plan		Р

Γ

Page 10 of 37

Report No. SHES190902342201

IEC 62133-2

	ILC 02133-2		
Clause	Requirement + Test	Result - Remark	Verdict
	The manufacturer prepares and implements a quality plan that defines procedures for the	ISO 9001 certificate was	Р

	quality plan that defines procedures for the inspection of materials, components, cells and batteries and which covers the whole process of producing each type of cell or battery	submitted. See Attachment 5 for detail	
5.8	Battery safety components		Р
	According annex F		Р

6	TYPE TEST AND SAMPLE SIZE		Р
	Tests are made with the number of cells or batteries specified in Table 1 using cells or batteries that are not more than six months old	Test are performed according to test items specified in table 1 of the standard.	Р
	Coin cells with resistance $\leq 3 \Omega$ (measured according annex D) are tested according table 1		N/A
	Unless otherwise specified, tests are carried out in an ambient temperature of 20 °C \pm 5 °C	The tests are conducted in an ambient of $20^{\circ}C \pm 5^{\circ}C$.	Р
	The safety analysis of 5.6.1 identify those components of the protection circuit that are critical for short-circuit, overcharge and overdischarge protection		Р
	When conducting the short-circuit test, consideration given to the simulation of any single fault condition that is likely to occur in the protecting circuit that would affect the short-circuit test		Р

7	SPECIFIC REQUIREMENTS AND TESTS	Р
7.1	Charging procedure for test purposes	Р
7.1.1	First procedure	Р
	This charging procedure applies to subclauses other than those specified in 7.1.2	Р
	Unless otherwise stated in this document, the charging procedure for test purposes is carried out in an ambient temperature of 20 °C \pm 5 °C, using the method declared by the manufacturer	Р
	Prior to charging, the battery have been discharged at 20 °C \pm 5 °C at a constant current of 0,2 It A down to a specified final voltage	Р
7.1.2	Second procedure	Р
	This charging procedure applies only to 7.3.1, 7.3.4, 7.3.5, and 7.3.9	Р

Page 11 of 37

Report No. SHES190902342201

N/A

	V	·	
	IEC 62133-2	1	1
Clause	Requirement + Test	Result - Remark	Verdict
	After stabilization for 1 h and 4 h, respectively, at ambient temperature of highest test temperature and lowest test temperature, as specified in Table 2, cells are charged by using the upper limit charging voltage and maximum charging current, until the charging current is reduced to 0,05 lt A, using a constant voltage charging method		Ρ
7.2	Intended use		Р
7.2.1	Continuous charging at constant voltage (cells)		Р
	Fully charged cells are subjected for 7 days to a charge using the charging method for current and standard voltage specified by the cell manufacturer		Р
	Results: No fire. No explosion. No leakage:		Р
7.2.2	Case stress at high ambient temperature (battery)		N/A
	Oven temperature (°C):		
	Results: No physical distortion of the battery case resulting in exposure of internal protective components and cells		N/A
7.3	Reasonably foreseeable misuse		Р
7.3.1	External short-circuit (cell)		Р
	The cells were tested until one of the following occurred:		Р
	- 24 hours elapsed; or		N/A
	- The case temperature declined by 20 % of the maximum temperature rise		Р
	Results: No fire. No explosion:		Р
7.3.2	External short-circuit (battery)		N/A
	The batteries were tested until one of the following occurred:		
	- 24 hours elapsed; or		N/A
	- The case temperature declined by 20 % of the maximum temperature rise		N/A
	In case of rapid decline in short circuit current, the battery pack remained on test for an additional one hour after the current reached a low end steady state condition		N/A
	A single fault in the discharge protection circuit conducted on one to four (depending upon the protection circuit) of the five samples before conducting the short-circuit test		N/A
	A single fault applies to protective component parts such as MOSFET, fuse, thermostat or positive temperature coefficient (PTC) thermistor		N/A

Results: No fire. No explosion.....: (See appended table 7.3.2)

Report No. SHES190902342201

Page 12 of 37

	IEC 62133-2		-
Clause	Requirement + Test	Result - Remark	Verdict
7.3.3	Free fall		Р
	Results: No fire. No explosion		P
7.3.4	Thermal abuse (cells)		P
1.0.1	Oven temperature (°C)	130	· _
	Results: No fire. No explosion		P
7.3.5	Crush (cells)		P
7.5.5	The crushing force was released upon:		P
	- The maximum force of 13 kN \pm 0,78 kN has been applied; or		P
	- An abrupt voltage drop of one-third of the original voltage has been obtained		N/A
	Results: No fire. No explosion:		Р
7.3.6	Over-charging of battery		N/A
	The supply voltage which is:		
	- 1,4 times the upper limit charging voltage presented in Table A.1 (but not to exceed 6,0 V) for single cell/cell block batteries or		N/A
	- 1,2 times the upper limit charging voltage resented in Table A.1 per cell for series connected multi-cell batteries, and		N/A
	- Sufficient to maintain a current of 2,0 It A throughout the duration of the test or until the supply voltage is reached		N/A
	Test was continued until the temperature of the outer casing:		N/A
	- Reached steady state conditions (less than 10 °C change in 30-minute period); or		N/A
	- Returned to ambient		N/A
	Results: No fire. No explosion:	(See appended table 7.3.6)	N/A
7.3.7	Forced discharge (cells)		Р
	If the discharge voltage reaches the negative value of upper limit charging voltage within the testing duration, the voltage is maintained at the negative value of the upper limit charging voltage by reducing the current for the remainder of the testing duration		N/A
	If the discharge voltage does not reach the negative value of upper limit charging voltage within the testing duration, the test is terminated at the end of the testing duration		Р
	Results: No fire. No explosion:		Р
7.3.8	Mechanical tests (batteries)		N/A
7.3.8.1	Vibration		N/A

TRF No. IEC62133_2A

Г

Page 13 of 37

Report No. SHES190902342201

IEC 62133-2

	IEC 02133-2		
Clause	Requirement + Test	Result - Remark	Verdict

	Results: No fire, no explosion, no rupture, no leakage or venting	(See appended table 7.3.8.1)	N/A
7.3.8.2	Mechanical shock		N/A
	Results: No leakage, no venting, no rupture, no explosion and no fire:	(See appended table 7.3.8.2)	N/A
7.3.9	Design evaluation – Forced internal short-circuit (cells)		Р
	The cells complied with national requirement for :	France, Japan, Korea and Switzerland.	—
	The pressing was stopped upon:		_
	- A voltage drop of 50 mV has been detected; or		N/A
	- The pressing force of 800 N (cylindrical cells) or 400 N (prismatic cells) has been reached	Cylindrical cells, 800N	Р
	Results: No fire:	(See appended table 7.3.9)	Р

8	INFORMATION FOR SAFETY		Р
8.1	General		Р
	Manufacturers of secondary cells ensure that information is provided about current, voltage and temperature limits of their products	See Attachment 4 for detail	Р
	Manufacturers of batteries ensure that equipment manufacturers and, in the case of direct sales, end- users are provided with information to minimize and mitigate hazards		N/A
	Systems analyses performed by device manufacturers to ensure that a particular battery design prevents hazards from occurring during use of a product		N/A
	As appropriate, any information relating to hazard avoidance resulting from a system analysis provided to the end user	Not for end user	N/A
	Do not allow children to replace batteries without adult supervision		N/A
8.2	Small cell and battery safety information		N/A
	The following warning language is to be provided with the information packaged with the small cells and batteries or equipment using them:		N/A
	- Keep small cells and batteries which are considered swallowable out of the reach of children		N/A
	- Swallowing may lead to burns, perforation of soft tissue, and death. Severe burns can occur within 2 h of ingestion		N/A
	- In case of ingestion of a cell or battery, seek medical assistance promptly		N/A

	Page	e 14	of 3	7
--	------	------	------	---

Report No. SHES190902342201

IEC 62133-2

Requirement + Test **Result - Remark** Verdict Clause

9	MARKING		Р
9.1	Cell marking		Р
	Cells marked as specified in IEC 61960, except coin cells	See page 4	Р
	Coin cells whose external surface area is too small to accommodate the markings on the cells show the designation and polarity		N/A
	By agreement between the cell manufacturer and the battery and/or end product manufacturer, component cells used in the manufacture of a battery need not be marked		N/A
9.2	Battery marking		N/A
	Batteries marked as specified in IEC 61960, except for coin batteries		N/A
	Coin batteries whose external surface area is too small to accommodate the markings on the batteries show the designation and polarity. Batteries also marked with an appropriate caution statement		N/A
	Terminals have clear polarity marking on the external surface of the battery		N/A
	Batteries with keyed external connectors designed for connection to specific end products need not be marked with polarity markings if the design of the external connector prevents reverse polarity connections		N/A
9.3	Caution for ingestion of small cells and batteries		N/A
	Coin cells and batteries identified as small batteries according to 8.2 include a caution statement regarding the hazards of ingestion in accordance with 8.2		N/A
	When small cells and batteries are intended for direct sale in consumer-replaceable applications, caution for ingestion given on the immediate package		N/A
9.4	Other information		Р
	Storage and disposal instructions	See attachment 2 for detail.	Р
	Recommended charging instructions	See attachment 4 for detail.	Р

10	PACKAGING AND TRANSPORT	Р
	Packaging for coin cells not small enough to fit within the limits of the ingestion gauge of Figure 3	N/A

Page 15 of 37

Report No. SHES190902342201

IEC 62133-2

Clause	Requirement + Test	Result - Remark	Verdict

The materials and packaging design are chosen so	See Attachment 3 for detail	Р
as to prevent the development of unintentional		
electrical conduction, corrosion of the terminals and		
ingress of environmental contaminants		

ANNEX A	CHARGING AND DISCHARGING RANGE OF SEC FOR SAFE USE	ONDARY LITHIUM ION CELLS	Р
A.1	General		Р
A.2	Safety of lithium ion secondary battery		Р
A.3	Consideration on charging voltage		Р
A.3.1	General		Р
A.3.2	Upper limit charging voltage		N/A
A.3.2.1	General		N/A
A.3.2.2	Explanation of safety viewpoint		N/A
A.3.2.3	Safety requirements, when different upper limit charging voltage is applied	The upper limit charging voltage is 4,2 V during test.	N/A
A.4	Consideration of temperature and charging current		Р
A.4.1	General		Р
A.4.2	Recommended temperature range		—
A.4.2.1	General		Р
A.4.2.2	Safety consideration when a different recommended temperature range is applied	The recommended temperature range: 0 °C to 45 °C in specification.	Р
A.4.3	High temperature range	The upper charging temperature is 45 °C during test.	N/A
A.4.3.1	General		N/A
A.4.3.2	Explanation of safety viewpoint		N/A
A.4.3.3	Safety considerations when specifying charging conditions in the high temperature range		N/A
A.4.3.4	Safety considerations when specifying a new upper limit in the high temperature range		N/A
A.4.4	Low temperature range	The lowest charging temperature is 0 °C in specification.	Ρ
A.4.4.1	General		Р
A.4.4.2	Explanation of safety viewpoint		Р
A.4.4.3	Safety considerations, when specifying charging conditions in the low temperature range		N/A

Clause

Requirement + Test

Report No. SHES190902342201

Verdict

Ρ

Page 16 of 37

\sim	604	20	2
C.	0Z I	33-	-2

120 02100 2	
	Result - Remark

	•		
A.4.4.4	Safety considerations when specifying a new lower limit in the low temperature range	The samples charged at 0 °C by the methods specified in 8.2 to 8.3.	Ρ
A.4.5	Scope of the application of charging current		Р
A.4.6	Consideration of discharge		Р
A.4.6.1	General		Р
A.4.6.2	Final discharge voltage and explanation of safety viewpoint		Р
A.4.6.3	Discharge current and temperature range		Р
A.4.6.4	Scope of application of the discharging current		Р
A.5	Sample preparation		Р
A.5.1	General		Р
A.5.2	Insertion procedure for nickel particle to generate internal short		Ρ
A.5.3	Disassembly of charged cell		Р
A.5.4	Shape of nickel particle		Р
A.5.5	Insertion of nickel particle in cylindrical cell		Р
A.5.5.1	Insertion of nickel particle in winding core		Р
A.5.5.2	Marking the position of the nickel particle on both ends of the winding core of the separator		Ρ
A.5.6	Insertion of nickel particle in prismatic cell		N/A
A.6	Experimental procedure of the forced internal short-circuit test		Ρ
A.6.1	Material and tools for preparation of nickel particle		Р
A.6.2	Example of a nickel particle preparation procedure		Р
A.6.3	Positioning (or placement) of a nickel particle		Р
A.6.4	Damaged separator precaution		Р
A.6.5	Caution for rewinding separator and electrode		Р
A.6.6	Insulation film for preventing short-circuit		Р
A.6.7	Caution when disassembling a cell		Р
A.6.8	Protective equipment for safety		Р
A.6.9	Caution in the case of fire during disassembling		Р
A.6.10	Caution for the disassembling process and pressing the electrode core		Ρ
A.6.11	Recommended specifications for the pressing		Р

ANNEX B RECOMMENDATIONS TO EQUIPMENT MANUFACTURERS AND BATTERY ASSEMBLERS

Page 17 of 37

Report No. SHES190902342201

IEC 62133-2

Clause Requirement + Test

Result - Remark

Verdict

ANNEX C RECOMMENDATIONS TO THE END-USERS

N/A

ANNEX D	MEASUREMENT OF THE INTERNAL AC RESISTANCE FOR COIN CELLS		
D.1	General		N/A
D.2	Method		N/A
	A sample size of three coin cells is required for this measurement	(See appended table D.2)	N/A
	Coin cells with an internal resistance of less than or equal to 3 Ω are subjected to the testing according to Clause 6 and Table 1		N/A
	Coin cells with an internal resistance greater than 3 Ω require no further testing		N/A

ANNEX E PACKAGING AND TRANSPORT P

ANNEX F	COMPONENT	STANDARDS	REFERENCES
		UTANDANDU	

N/A

Page 18 of 37

Report No. SHES190902342201

IEC 62133-2

Clause Requirement + Test

Result - Remark

Verdict

Т	ABLE: Critical compon	ents informati	on		Р
Object / part No.	Manufacturer / trademark	Type / model	Technical data	Standard	Mark(s) of conformity ¹⁾
Cell 1	DLG Power Battery (Ningbo Fenghua) Co., Ltd.	INR18650- 320	3,6V, 3200mAh	IEC 62133-2: 2017 EN 62133- 2:2017	Tested with appliance
-Electrolyte			LiPF6/EC/EMC/DMC H2O≤20ppm HF≤50ppm		
-Separator		61*0,015mm (12um+3um)	PE/r-AIOOH Thickness: 15± 1,5um H2O≪800ppm		
-Positive electrode			SiO and graphite composite material D50=17±2um		
-Negative electrode			NCM D50=11±2um		
Cell 2	DLG Power Battery (Ningbo Fenghua) Co., Ltd.	INR18650- 350	3,6V, 3500mAh	IEC 62133-2: 2017 EN 62133- 2:2017	Tested with appliance
-Electrolyte			LiPF6/EC/EMC/DMC H2O≤20ppm HF≤50ppm		
-Separator		61*0,014mm (11um+3um)	PE/r-AlOOH Thickness: 14±2um H2O≤1000ppm		
-Positive electrode			Si and C composite material D50=16±2um		
-Negative electrode			NCA D50=11,5±2um		
Cell 3	DLG Power Battery (Ningbo Fenghua) Co., Ltd.	INR18650- 3000	3,6V, 3000mAh	IEC 62133-2: 2017 EN 62133- 2:2017	Tested with appliance
-Electrolyte			LiPF6/EC/EMC/DMC H2O≪20ppm HF≪50ppm		
-Separator		61*0,015mm (12um+3um)	PE/r-AlOOH Thickness: 15± 1,5um H2O≪800ppm		
-Positive electrode			SiO and graphite composite material D50=17±2um		
-Negative electrode			NCM D50=11±2um		

Page 19 of 37

Report No. SHES190902342201

```
IEC 62133-2
```

Clause Requirement + Test

Result - Remark

Verdict

Cell 4	DLG Power Battery (Ningbo Fenghua) Co., Ltd.	INR18650E T-350	3,6V, 3500mAh	IEC 62133-2: 2017 EN 62133- 2:2017	Tested with appliance
-Electrolyte			LiPF6/EC/EMC/DMC H2O≤20ppm HF≤50ppm		
-Separator	-	61*0,014mm (11um+3um)	PE/r-AIOOH Thickness: 14±2um H2O≤1000ppm		-
-Positive electrode			Si and C composite material D50=16±2um		
-Negative electrode			NCA D50=11,5±2um		
Cell 5	DLG Power Battery (Ningbo Fenghua) Co., Ltd.	NCM18650- 260	3,6V, 2600mAh	IEC 62133-2: 2017 EN 62133- 2:2017	Tested with appliance
-Electrolyte			LiPF6/EC/EMC/DMC H2O≪20ppm HF≪50ppm		
-Separator		61*0,015mm (12um+3um)	PE/r-AlOOH Thickness: 15± 1,5um H2O≤800ppm		
-Positive electrode			Graphite D50=14±2um		
-Negative electrode			NCM D50=11±2um		
Cell 6	DLG Power Battery (Ningbo Fenghua) Co., Ltd.	NCM18650 ET-260	3,6V, 2600mAh	IEC 62133-2: 2017 EN 62133- 2:2017	Tested with appliance
-Electrolyte			LiPF6/EC/EMC/DMC H2O≪20ppm HF≪50ppm		
-Separator		61*0,015mm (12um+3um)	PE/r-AlOOH Thickness: 15± 1,5um H2O≪800ppm		
-Positive electrode			Graphite D50=14±2um		
-Negative electrode			NCM D50=11±2um		

Report No.	SHES190902342201
------------	------------------

Page 20 of 37	

		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict

7.2.1	.2.1 TABLE: Continuous charging at constant voltage (cells)				
San	nple no.	Recommended charging voltage Vc (Vdc)	Recommended charging current I _{rec} (A)	OCV before test (Vdc)	Results
INR186	50-320 (#1)	4,2	1,6	4,16	Pass
INR186	50-320 (#2)	4,2	1,6	4,16	Pass
INR186	50-320 (#3)	4,2	1,6	4,15	Pass
INR186	50-320 (#4)	4,2	1,6	4,16	Pass
INR186	50-320 (#5)	4,2	1,6	4,16	Pass

- No leakage

.2.1 1	TABLE: Continuous charging at constant voltage (cells)					
Sample no.		Recommended charging voltage Vc (Vdc)Recommended charging current Irec		OCV before test (Vdc)	Results	
INR18650-350 (#1)		4,2	1,75	4,16	Pass	
INR18650-350 (#2)		4,2	1,75	4,16	Pass	
INR18650-350 (#3)		4,2	1,75	4,15	Pass	
INR18650-350 (#4)		4,2	1,75	4,16	Pass	
INR18650-350 (#5)		4,2	1,75	4,15	Pass	

- No fire or explosion

- No leakage

7.2.1	TABLE: Contin	TABLE: Continuous charging at constant voltage (cells)			
Sample no.		Recommended charging voltage Vc (Vdc)	Recommended charging current I _{rec} (A)	OCV before test (Vdc)	Results
INR18650-3000 (#1)		4,2	1,5	4,16	Pass
INR18650-3000 (#2)		4,2	1,5	4,15	Pass
INR18650-3000 (#3)		4,2	1,5	4,16	Pass
INR18650-3000 (#4)		4,2	1,5	4,15	Pass
INR18650-3000 (#5)		4,2	1,5	4,15	Pass
Suppleme	ntary informatio	on:	1		1
- No fire or e	explosion				
- No leakad	0				

- No leakage

Report No	. SHES190902342201
-----------	--------------------

Page 21 of 37

	IEC 62133-2		
Clause	Requirement + Test	Result - Remark	Verdict

7.2.1	TABLE: Continuous charging at constant voltage (cells)		Р			
Sample no.		Recommended charging voltage Vc (Vdc)Recommended charging current Ired		OCV before test (Vdc)	Results	
INR18650	ET-350 (#1)	4,2	1,75	4,15	Pass	
INR18650	ET-350 (#2)	4,2	1,75	4,16	Pass	
INR18650	ET-350 (#3)	4,2	1,75	4,16	Pass	
INR18650ET-350 (#4)		4,2	1,75	4,15	Pass	
INR18650ET-350 (#5)		4,2	1,75	4,16	Pass	

- No fire or explosion

- No leakage

7.2.1 T	CABLE: Continuous charging at constant voltage (cells)					Р	
Sample no.		Recommended charging voltage Vc (Vdc)Recommended charging current Irec		OCV before test (Vdc)	R	Results	
NCM18650	0-260 (#1)	4,2	1,3	4,16		Pass	
NCM18650-260 (#2)		4,2	1,3	4,16		Pass	
NCM18650-260 (#3)		4,2	1,3	4,15		Pass	
NCM18650-260 (#4)		4,2	1,3	4,15		Pass	
NCM18650-260 (#5)		4,2	1,3	4,16		Pass	

- No leakage

7.2.1	TABLE: Continuous charging at constant voltage (cells)				Р	
Sample no.		Sample no. Recommended charging voltage Vc (Vdc) (A)		OCV before test (Vdc)	Results	
NCM18650ET-260 (#1)		4,2	1,3	4,16	Pass	
NCM186	50ET-260 (#2)	4,2	1,3	4,16	Pass	
NCM18650ET-260 (#3)		4,2	1,3	4,15	Pass	
NCM18650ET-260 (#4)		4,2	1,3	4,15	Pass	
NCM18650ET-260 (#5)		4,2	1,3	4,16	Pass	
Suppleme	entary informatio	n:				
- No fire or	explosion					
- No leakag	ge					

Page 22 of 37

Report No. SHES190902342201

IEC 62133-2

Clause Requirement + Test Result - Remark

Verdict

7.2.2	TABLE:	TABLE: Case stress at high ambient temperature				
Sample no.		OCV at start of test (Vdc)	Resu	ults		
Supplementary information: None						

7.3.1 TABLE: External short-circuit (cell) Ρ **Ambient T OCV** before Resistance Maximum case Sample no. Results (°C) test (Vdc) of circuit temperature rise (mΩ) **ΔT (K)** Samples charged at charging temperature upper limit ¹⁾ 85 INR18650-320 (#6) 55 4,16 33 Pass INR18650-320 (#7) 55 4,16 85 31 Pass INR18650-320 (#8) 55 4,15 85 30 Pass INR18650-320 (#9) 55 4,16 86 34 Pass INR18650-320 (#10) 55 4,16 85 33 Pass Samples charged at charging temperature lower limit ²⁾ INR18650-320 (#11) 55 4,08 85 53 Pass INR18650-320 (#12) 55 4,08 85 50 Pass 49 INR18650-320 (#13) 55 4,08 85 Pass INR18650-320 (#14) 55 4,08 85 52 Pass INR18650-320 (#15) 55 4,09 85 54 Pass Supplementary information: - No fire or explosion

		Page 23 of 37	Report No. SHES19090	2342201
		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict

.3.1	TABLE: Extern	nal short-circui	t (cell)			Р
Sa	ample no.	Ambient T (°C)	OCV before test (Vdc)	Resistance of circuit (mΩ)	Maximum case temperature rise ∆T (K)	Results
	Sam	ples charged a	at charging ten	nperature uppe	er limit ¹⁾	
INR18	3650-350 (#6)	55	4,15	85	37	Pass
INR18	3650-350 (#7)	55	4,16	84	35	Pass
INR18650-350 (#8)		55	4,15	85	34	Pass
INR18650-350 (#9)		55	4,15	86	39	Pass
INR18	INR18650-350 (#10) 55		4,16	84	37	Pass
	Sam	ples charged a	at charging ten	perature lowe	er limit ²⁾	
INR18	650-350 (#11)	55	4,08	85	45	Pass
INR18	650-350 (#12)	55	4,08	85	43	Pass
INR18	650-350 (#13)	55	4,07	85	40	Pass
INR18	INR18650-350 (#14)		4,08	85	49	Pass
INR18650-350 (#15) 55		4,08	85	41	Pass	

3.1 TABLE: External sh Sample no. An		Ambient T (°C)	OCV before test (Vdc)	Resistance of circuit (mΩ)	Maximum case temperature rise ∆T (K)	Result
	Samp	oles charged a	at charging ten	nperature uppe	er limit ¹⁾	
INR186	50-3000 (#6)	55	4,16	85	49	Pass
INR186	50-3000 (#7)	55	4,16	85	47	Pass
INR186	50-3000 (#8)	55	4,16	86	51	Pass
INR186	50-3000 (#9)	55	4,15	84	50	Pass
INR18650-3000 (#10)		55	4,15	85	46	Pass
	Samp	oles charged a	at charging ten	perature lowe	r limit ²⁾	
INR1865	50-3000 (#11)	55	4,07	85	56	Pass
INR1865	50-3000 (#12)	55	4,08	85	58	Pass
INR1865	50-3000 (#13)	55	4,08	85	50	Pass
INR1865	50-3000 (#14)	55	4,07	85	57	Pass
INR18650-3000 (#15)		55	4,08	85	53	Pass
upplemer No fire or e	ntary information	n:				

Report	No.	SHES190902342201
--------	-----	------------------

IEC 62133-2

Page 24 of 37

Clause Requirement + Test

Result - Remark

Verdict

7.3.1	TABLE: Extern	al short-circui	t (cell)			Р
Sample no.		Ambient T (°C)	OCV before test (Vdc)	Resistance of circuit (mΩ)	Maximum case temperature rise ∆T (K)	Results
	Samp	oles charged a	at charging ten	nperature uppe	er limit ¹⁾	
INR18	650ET-350 (#6)	55	4,16	85	19	Pass
INR186	650ET-350 (#7)	55	4,16	85	20	Pass
INR186	650ET-350 (#8)	55	4,16	84	24	Pass
INR186	650ET-350 (#9)	55	4,15	85	20	Pass
INR186	50ET-350 (#10)	55	4,16	85	25	Pass
	Samp	oles charged a	at charging ten	perature lowe	r limit ²⁾	
INR186	50ET-350 (#11)	55	4,08	85	16	Pass
INR186	50ET-350 (#12)	55	4,08	84	19	Pass
INR186	50ET-350 (#13)	55	4,07	85	16	Pass
INR186	50ET-350 (#14)	55	4,08	85	20	Pass
INR186	50ET-350 (#15)	55	4,08	85	17	Pass

.3.1	TABLE: Externa	al short-circui	t (cell)			Р
Sample no.		Ambient T (°C)	OCV before test (Vdc)	Resistance of circuit (mΩ)	Maximum case temperature rise ∆T (K)	Results
	Samp	les charged a	at charging ten	perature uppe	r limit ¹⁾	
NCM1	8650-260 (#6)	55	4,16	86	30	Pass
NCM1	8650-260 (#7)	55	4,16	85	28	Pass
NCM1	8650-260 (#8)	55	4,15	85	29	Pass
NCM1	8650-260 (#9)	55	4,16	87	32	Pass
NCM18650-260 (#10)		55	4,15	85	25	Pass
	Samp	les charged a	at charging ten	perature lowe	r limit ²⁾	
NCM18	3650-260 (#11)	55	4,08	85	27	Pass
NCM18	3650-260 (#12)	55	4,09	85	25	Pass
NCM18	3650-260 (#13)	55	4,08	85	29	Pass
NCM18	3650-260 (#14)	55	4,08	85	32	Pass
NCM18650-260 (#15) 55		55	4,08	85	29	Pass
	entary information		.,			

Clause

Report	No.	SHES190902342201
--------	-----	------------------

Result - Remark

IE	С	621	33-2	
	<u> </u>	· - ·	00 -	

Page 25 of 37

Requirement + Test

Verdict

	(°C)	test (Vdc)	of circuit (mΩ)	temperature rise ∆T (K)	
Samp	les charged a	at charging terr	perature uppe	r limit ¹⁾	
60 (#6)	55	4,16	85	16	Pass
60 (#7)	55	4,16	85	17	Pass
60 (#8)	55	4,15	85	16	Pass
60 (#9)	55	4,15	85	18	Pass
30 (#10)	55	4,16	85	18	Pass
Samp	les charged a	at charging terr	perature lowe	r limit ²⁾	
30 (#11)	55	4,08	85	19	Pass
30 (#12)	55	4,08	85	19	Pass
30 (#13)	55	4,08	85	19	Pass
30 (#14)	55	4,08	85	18	Pass
30 (#15)	55	4,09	85	20	Pass
	260 (#6) 260 (#7) 260 (#8) 260 (#9) 60 (#10) Samp 60 (#11) 60 (#12) 60 (#13) 60 (#14) 60 (#15)	260 (#6) 55 260 (#7) 55 260 (#8) 55 260 (#9) 55 260 (#10) 55 260 (#11) 55 260 (#12) 55 260 (#13) 55 260 (#14) 55	260 (#6) 55 4,16 260 (#7) 55 4,16 260 (#7) 55 4,16 260 (#8) 55 4,15 260 (#9) 55 4,15 260 (#10) 55 4,16 Samples charged at charging tem 60 (#11) 55 4,08 60 (#12) 55 4,08 60 (#13) 55 4,08 60 (#14) 55 4,08 60 (#15) 55 4,09	Samples charged at charging temperature uppe 260 (#6) 55 4,16 85 260 (#7) 55 4,16 85 260 (#7) 55 4,16 85 260 (#7) 55 4,15 85 260 (#8) 55 4,15 85 260 (#9) 55 4,15 85 260 (#10) 55 4,16 85 Samples charged at charging temperature lowe 60 (#11) 55 4,08 85 60 (#11) 55 4,08 85 60 (#12) 55 4,08 85 60 (#13) 55 4,08 85 60 (#14) 55 4,08 85 60 (#14) 55 4,08 85	Samples charged at charging temperature upper limit ¹⁾ 260 (#6) 55 4,16 85 16 260 (#7) 55 4,16 85 17 260 (#7) 55 4,16 85 17 260 (#8) 55 4,15 85 16 260 (#9) 55 4,15 85 18 260 (#10) 55 4,16 85 18 260 (#10) 55 4,16 85 18 260 (#10) 55 4,08 85 19 60 (#11) 55 4,08 85 19 60 (#11) 55 4,08 85 19 60 (#12) 55 4,08 85 19 60 (#13) 55 4,08 85 19 60 (#14) 55 4,08 85 18 60 (#15) 55 4,09 85 20

7.3.2	TAE	ABLE: External short-circuit battery)						N/A
Sample n	0.	Ambient T (°C)	OCV before test (Vdc)	Resistance of circuit (mΩ)	Maximum case temperature rise ∆T (K)	Component single fault condition	F	Results
Supplementary information: None								

Report No.	SHES190902342201
------------	------------------

		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict

Page 26 of 37

3.5	TABLE: Crush	(cells)			Р
Sample no.		OCV before test (Vdc)	OCV at removal of crushing force (Vdc)	Maximum force applied to the cell during crush (kN)	Results
	Sam	ples charged at cha	rging temperature	upper limit ¹⁾	
INR186	50-320 (#29)	4,16	4,15	13,1	Pass
INR186	50-320 (#30)	4,16	4,14	13,1	Pass
INR186	50-320 (#31)	4,15	4,14	13,1	Pass
INR186	50-320 (#32)	4,16	4,14	13,1	Pass
INR186	50-320 (#33)	4,16	4,13	13,1	Pass
	Sam	ples charged at cha	rging temperature	lower limit ²⁾	
INR186	50-320 (#34)	4,09	4,09	13,1	Pass
INR186	50-320 (#35)	4,08	4,08	13,1	Pass
INR186	50-320 (#36)	4,08	4,06	13,1	Pass
INR186	50-320 (#37)	4,09	4,09	13,1	Pass
INR186	50-320 (#38)	4,09	4,08	13,1	Pass

Supplementary information:

Sample no.		OCV before test (Vdc)	OCV at removal of crushing force (Vdc)	Maximum force applied to the cell during crush (kN)	Results
	Sam	ples charged at cha	rging temperature	upper limit ¹⁾	
INR186	650-350 (#29)	4,16	3,80	13,1	Pass
INR186	650-350 (#30)	4,15	3,81	13,1	Pass
INR186	650-350 (#31)	4,16	3,85	13,1	Pass
INR186	650-350 (#32)	4,16	3,81	13,1	Pass
INR18650-350 (#33)		4,15	3,80	13,1	Pass
	Sam	ples charged at cha	rging temperature	lower limit ²⁾	
INR186	650-350 (#34)	4,08	4,04	13,1	Pass
INR186	650-350 (#35)	4,07	4,03	13,1	Pass
INR186	650-350 (#36)	4,08	4,03	13,1	Pass
INR186	650-350 (#37)	4,08	4,04	13,1	Pass
INR18650-350 (#38) 4,08		4,03	13,1	Pass	

Report No.	SHES190)902342201
------------	---------	------------

IEC 62133-2

		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict

Page 27 of 37

.5	TABLE: Crush	(cells)			Р
Sample no.		OCV before test (Vdc)	OCV at removal of crushing force (Vdc)	Maximum force applied to the cell during crush (kN)	Results
	Sam	ples charged at cha	rging temperature	upper limit ¹⁾	
INR186	50-3000 (#29)	4,16	4,13	13,1	Pass
INR186	50-3000 (#30)	4,16	4,14	13,1	Pass
INR186	50-3000 (#31)	4,16	4,14	13,1	Pass
INR186	50-3000 (#32)	4,15	4,13	13,1	Pass
INR186	50-3000 (#33)	4,16	4,14	13,1	Pass
	Sam	ples charged at cha	rging temperature	lower limit ²⁾	
INR186	50-3000 (#34)	4,08	4,08	13,1	Pass
INR186	50-3000 (#35)	4,08	4,07	13,1	Pass
INR186	50-3000 (#36)	4,08	4,08	13,1	Pass
INR186	50-3000 (#37)	4,08	4,08	13,1	Pass
INR186	50-3000 (#38)	4,08	4,08	13,1	Pass

Supplementary information:

.3.5	TABLE: Crush	(cells)			Р
Sample no.		OCV before test (Vdc)	OCV at removal of crushing force (Vdc)	Maximum force applied to the cell during crush (kN)	Results
	Samp	oles charged at cha	rging temperature	upper limit ¹⁾	
INR18650	ET-350 (#29)	4,16	3,93	13,1	Pass
INR18650	ET-350 (#30)	4,16	3,92	13,1	Pass
INR18650	ET-350 (#31)	4,15	3,93	13,1	Pass
INR18650	ET-350 (#32)	4,16	3,93	13,1	Pass
INR18650	ET-350 (#33)	4,16	3,93	13,1	Pass
	Samp	oles charged at cha	rging temperature	lower limit ²⁾	
INR18650	ET-350 (#34)	4,08	3,88	13,1	Pass
INR18650	ET-350 (#35)	4,09	3,89	13,1	Pass
INR18650	ET-350 (#36)	4,09	3,89	13,1	Pass
INR18650	ET-350 (#37)	4,09	3,88	13,1	Pass
INR18650	ET-350 (#38)	4,08	3,89	13,1	Pass

Report No.	SHES190902342201
------------	------------------

IEC 62133-2

IEC 62133-2						
Clause	Requirement + Test	Result - Remark	Verdict			

Page 28 of 37

.5	TABLE: Crush	(cells)			Р
Sample no.		OCV before test (Vdc)	OCV at removal of crushing force (Vdc)	Maximum force applied to the cell during crush (kN)	Results
	Sam	ples charged at cha	rging temperature	upper limit ¹⁾	
NCM18	3650-260 (#29)	4,16	4,14	13,1	Pass
NCM18	3650-260 (#30)	4,15	4,13	13,1	Pass
NCM18	3650-260 (#31)	4,16	4,14	13,1	Pass
NCM18	3650-260 (#32)	4,15	4,14	13,1	Pass
NCM18	3650-260 (#33)	4,16	4,13	13,1	Pass
	Sam	ples charged at cha	rging temperature	lower limit ²⁾	
NCM18	3650-260 (#34)	4,08	4,06	13,1	Pass
NCM18	3650-260 (#35)	4,09	4,07	13,1	Pass
NCM18	3650-260 (#36)	4,09	4,07	13,1	Pass
NCM18	3650-260 (#37)	4,08	4,07	13,1	Pass
NCM18	3650-260 (#38)	4,08	4,06	13,1	Pass

Supplementary information:

7.3.5	TABLE: Crush (cells)			Р
Sample no.		OCV before test (Vdc)	OCV at removal of crushing force (Vdc)	Maximum force applied to the cell during crush (kN)	Results
	Sampl	es charged at cha	rging temperature	upper limit ¹⁾	
NCM1865	0ET-260 (#29)	4,16	4,15	13,1	Pass
NCM1865	0ET-260 (#30)	4,16	4,15	13,1	Pass
NCM1865	0ET-260 (#31)	4,16	4,14	13,1	Pass
NCM1865	0ET-260 (#32)	4,15	4,14	13,1	Pass
NCM1865	0ET-260 (#33)	4,16	4,15	13,1	Pass
	Sampl	es charged at cha	rging temperature	lower limit ²⁾	
NCM1865	0ET-260 (#34)	4,08	4,07	13,1	Pass
NCM1865	0ET-260 (#35)	4,08	4,07	13,1	Pass
NCM1865	0ET-260 (#36)	4,08	4,07	13,1	Pass
NCM1865	0ET-260 (#37)	4,08	4,06	13,1	Pass
NCM1865	0ET-260 (#38)	4,08	4,06	13,1	Pass
	tary information				
No fire or e	xpiosion				

Report No. SHES190902342201

IF	C	621	33	_

Page 29 of 37

	IEC 62133-2		
Clause	Requirement + Test	Result - Remark	Verdict

7.3.6	TABLE: Ov	TABLE: Over-charging of battery					N/A
Constant charging current (A)							
Supply voltage (Vdc)					_		
Sampl	e no.	OCV before charging (Vdc)		harging minute)	Maximum outer case temperature (°C)	Re	esults
	-						

Supplementary information: None

7.3.7	TABLE: Forced	d discharge (cells)			Р
S	ample no.	OCV before application of reverse charge (Vdc) Measured reverse charge I _t (A) d		Lower limit discharge voltage (Vdc)	Results
INR18	3650-320 (#39)	3,16	3,2	4,2	Pass
INR18	3650-320 (#40)	3,16	3,2	4,2	Pass
INR18	3650-320 (#41)	3,15	3,2	4,2	Pass
INR18	3650-320 (#42)	3,16	3,2	4,2	Pass
INR18	3650-320 (#43)	3,16	3,2	4,2	Pass

7.3.7	TABLE: Forced	l discharge (cells)			Р
Sa	ample no.	OCV before application of reverse charge (Vdc)	Measured reverse charge I _t (A)	Lower limit discharge voltage (Vdc)	Results
INR18	650-350 (#39)	2,98	3,5	4,2	Pass
INR18	650-350 (#40)	2,98	3,5	4,2	Pass
INR18	650-350 (#41)	2,97	3,5	4,2	Pass
INR18	650-350 (#42)	2,98	3,5	4,2	Pass
INR18650-350 (#43)		2,97	3,5	4,2	Pass

		Page 30 of 37	Report No. SHES	\$190902342201
		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict
	·			

7.3.7	TABLE: Forced	l discharge (cells)			Р
Sample no.		OCV before application of reverse charge (Vdc)	Measured reverse charge I _t (A) Lower limit discharge voltage (Vdc)		Results
INR18	650-3000 (#39)	3,18	3,0	4,2	Pass
INR18650-3000 (#40)		3,18	3,0	4,2	Pass
INR18650-3000 (#41)		3,20	3,0	4,2	Pass
INR18	650-3000 (#42)	3,18	3,0	4,2	Pass
INR18650-3000 (#43)		3,18	3,0	4,2	Pass

7.3.7	TABLE: Forced	discharge (cells)			Р
Sa	mple no.	OCV before application of reverse charge (Vdc)	Measured reverse charge I _t (A)	Lower limit discharge voltage (Vdc)	Results
INR1865	0ET-350 (#39)	2,93	3,5	4,2	Pass
INR18650ET-350 (#40)		2,95	3,5	4,2	Pass
INR18650ET-350 (#41)		2,93	3,5	4,2	Pass
INR1865	0ET-350 (#42)	2,93	3,5	4,2	Pass
INR18650ET-350 (#43)		2,93	3,5	4,2	Pass

7.3.7	TABLE: Forced discharge (cells)						
Sample no.		OCV before application of reverse charge (Vdc)	Measured reverse charge I _t (A)	Lower limit discharge voltage (Vdc)	Results		
NCM18	650-260 (#39)	3,27	2,6	4,2	Pass		
NCM18650-260 (#40)		3,26	2,6	4,2	Pass		
NCM18650-260 (#41)		3,27	2,6	4,2	Pass		
NCM18650-260 (#42)		3,26	2,6	4,2	Pass		
NCM18650-260 (#43)		CM18650-260 (#43) 3,26		4,2	Pass		

Page 31 of 37
IEC 62133-2

IEC 62133-2				
Clause	Requirement + Test	Result - Remark	Verdict	

7.3.7	TABLE: Forced	discharge (cells)					
S	ample no.	OCV before application of reverse charge (Vdc)	Measured reverse charge I _t (A)	Lower limit discharge voltage (Vdc)	Results		
NCM18	650ET-260 (#39)	3,25	2,6	4,2	Pass		
NCM18	650ET-260 (#40)	3,23	2,6	4,2	Pass		
NCM18	650ET-260 (#41)	3,24	2,6	4,2	Pass		
NCM18	650ET-260 (#42)	3,25	2,6	4,2	Pass		
NCM18650ET-260 (#43)		3,24	2,6	4,2	Pass		

7.3.8.1	TABLE: V	ABLE: Vibration					
Sample no.		OCV before test (Vdc)	OCV after test (Vdc)	Mass before test (g)	Mass after test (g)	Re	sults
Supplementary information: None							

7.3.8.2	TABLE: Mechanical shock						N/A
Sample no.		OCV before test (Vdc)	OCV after test (Vdc)	Mass before test (g)	Mass after test (g)	Re	sults
Supplementary information: None							

Clause

Report I	No.	SHES190902342201
----------	-----	------------------

IEC 62133-2

Page 32 of 37

Requirement + Test

Result - Remark

Verdict

7.3.9	TABLE: Forced	internal shor	t circuit (cells)			Р
Sar	mple no.	Chamber ambient T (°C)	OCV before test (Vdc)	Particle location ¹⁾	Maximum applied pressure (N)	Results
	Samp	les charged a	at charging ten	nperature upp	per limit ²⁾	
INR186	50-320 (#44)	45	4,16	1	800	Pass
INR186	50-320 (#45)	45	4,16	1	800	Pass
INR186	50-320 (#46)	45	4,16	1	800	Pass
INR186	50-320 (#47)	45	4,16	1	800	Pass
INR186	50-320 (#48)	45	4,15	1	800	Pass
	Samp	les charged a	at charging ten	perature low	er limit ³⁾	
INR186	50-320 (#49)	0	4,16	1	800	Pass
INR186	50-320 (#50)	0	4,15	1	800	Pass
INR186	50-320 (#51)	0	4,16	1	800	Pass
INR186	50-320 (#52)	0	4,16	1	800	Pass
INR186	50-320 (#53)	0	4,16	1	800	Pass
¹⁾ Identify on 1: Nickel pa	ntary information be of the following: rticle inserted betw rticle inserted betw	ween positive a	e (coated area.	2

2: Nickel particle inserted between positive aluminium foil and negative active material coated area.

		Page 33 of 37	Report No. SHES19090	2342201
		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict

.3.9	TABLE: Force	d internal shor	t circuit (cells)			Р
Sai	mple no.	Chamber ambient T (°C)	OCV before test (Vdc)	Particle location ¹⁾	Maximum applied pressure (N)	Results
	Sam	ples charged a	at charging ten	nperature upp	oer limit ²⁾	
INR186	50-350 (#44)	45	4,15	1	800	Pass
INR186	50-350 (#45)	45	4,15	1	800	Pass
INR186	50-350 (#46)	45	4,16	1	800	Pass
INR186	50-350 (#47)	45	4,16	1	800	Pass
INR186	50-350 (#48)	45	4,15	1	800	Pass
	Sam	ples charged a	at charging ten	perature low	er limit ³⁾	
INR186	50-350 (#49)	0	4,16	1	800	Pass
INR186	50-350 (#50)	0	4,15	1	800	Pass
INR186	50-350 (#51)	0	4,15	1	800	Pass
INR186	50-350 (#52)	0	4,15	1	800	Pass
INR186	50-350 (#53)	0	4,16	1	800	Pass
) Identify or I: Nickel pa	ntary information the of the following inticle inserted be	: ween positive a			coated area. ive material coated are	

2: Nickel particle inserted between positive aluminium foil and negative active material coated area.

		Page 34 of 37	Report No. SHES19090	2342201
		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict

d internal shor	t circuit (cells)			Р
Chamber ambient T (°C)	OCV before test (Vdc)	Particle location ¹⁾	Maximum applied pressure (N)	Results
ples charged a	at charging ten	nperature upp	oer limit ²⁾	
45	4,15	1	800	Pass
45	4,15	1	800	Pass
45	4,16	1	800	Pass
45	4,16	1	800	Pass
45	4,15	1	800	Pass
ples charged a	at charging ten	nperature low	ver limit ³⁾	
0	4,16	1	800	Pass
0	4,15	1	800	Pass
0	4,15	1	800	Pass
0	4,15	1	800	Pass
0	4,16	1	800	Pass
g:			· · · · · ·	
	. .			2
	Chamber ambient T (°C) ples charged a 45 45 45 45 45 45 0 0 0 0 0 0 0 0 0 0 0	ambient T (°C) test (Vdc) ples charged at charging ten 45 4,15 45 4,15 45 4,16 45 4,16 45 4,16 45 4,16 45 4,16 45 4,16 0 4,16 0 4,15 0 4,15 0 4,15 0 4,15 0 4,15 0 4,16 0 4,15 0 4,16 0 4,16 0 4,15 0 4,16 0 4,16 0 4,16 0 4,16 0 4,16 0 4,16	Chamber ambient T (°C)OCV before test (Vdc)Particle location 1)ples charged at charging temperature upp454,15454,15454,16454,16454,16454,16454,161145104,1504,1504,1504,151004,161104,1504,161004,161004,161004,161004,161004,161004,161004,161004,161004,161004,161004,161004,16104,16104,16100000000000000000000000 <t< td=""><td>Chamber ambient T (°C) OCV before test (Vdc) Particle location¹) Maximum applied pressure (N) ples charged at charging temperature upper limit² 45 4,15 1 800 45 4,15 1 800 45 4,16 1 800 45 4,16 1 800 45 4,16 1 800 45 4,16 1 800 45 4,16 1 800 45 4,16 1 800 9 0 4,15 1 800 0 4,16 1 800 0 0 4,16 1 800 0 0 4,15 1 800 0 0 4,15 1 800 0 0 4,15 1 800 0 0 4,16 1 800 0 0 4,16 1 800 0</td></t<>	Chamber ambient T (°C) OCV before test (Vdc) Particle location ¹) Maximum applied pressure (N) ples charged at charging temperature upper limit ² 45 4,15 1 800 45 4,15 1 800 45 4,16 1 800 45 4,16 1 800 45 4,16 1 800 45 4,16 1 800 45 4,16 1 800 45 4,16 1 800 9 0 4,15 1 800 0 4,16 1 800 0 0 4,16 1 800 0 0 4,15 1 800 0 0 4,15 1 800 0 0 4,15 1 800 0 0 4,16 1 800 0 0 4,16 1 800 0

_		Page 35 of 37	Report No. SHES19090	2342201
		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict

.3.9	TABLE: Forced	internal shor	t circuit (cells)			Р
Sample no.		Chamber ambient T (°C)	OCV before test (Vdc)	Particle location ¹⁾	Maximum applied pressure (N)	Results
	Samp	les charged a	at charging ten	nperature upp	oer limit ²⁾	
INR1865	50ET-350 (#44)	45	4,15	1	800	Pass
INR1865	50ET-350 (#45)	45	4,16	1	800	Pass
INR1865	50ET-350 (#46)	45	4,15	1	800	Pass
INR1865	50ET-350 (#47)	45	4,15	1	800	Pass
INR1865	50ET-350 (#48)	45	4,16	1	800	Pass
	Samp	les charged a	at charging ten	perature low	ver limit ³⁾	
INR1865	50ET-350 (#49)	0	4,16	1	800	Pass
INR1865	50ET-350 (#50)	0	4,16	1	800	Pass
INR1865	50ET-350 (#51)	0	4,15	1	800	Pass
INR1865	50ET-350 (#52)	0	4,15	1	800	Pass
INR1865	50ET-350 (#53)	0	4,16	1	800	Pass
ldentify o Nickel pa	entary information ne of the following: article inserted betw article inserted betw	ween positive a			coated area. ive material coated are	ea.

		Page 36 of 37 Report No. SHES190902342		
		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict

.3.9	TABLE: Forced	l internal shor	t circuit (cells)			Р
Sa	ample no.	Chamber ambient T (°C)	OCV before test (Vdc)	Particle location ¹⁾	Maximum applied pressure (N)	Results
	Sam	oles charged a	at charging ten	nperature upp	oer limit ²⁾	
NCM18	3650-260 (#44)	45	4,15	1	800	Pass
NCM18	3650-260 (#45)	45	4,15	1	800	Pass
NCM18	3650-260 (#46)	45	4,16	1	800	Pass
NCM18	3650-260 (#47)	45	4,15	1	800	Pass
NCM18	3650-260 (#48)	45	4,15	1	800	Pass
	Sam	oles charged a	at charging ten	nperature low	er limit ³⁾	
NCM18	3650-260 (#49)	0	4,16	1	800	Pass
NCM18	3650-260 (#50)	0	4,15	1	800	Pass
NCM18	3650-260 (#51)	0	4,15	1	800	Pass
NCM18	3650-260 (#52)	0	4,16	1	800	Pass
NCM18	3650-260 (#53)	0	4,15	1	800	Pass
) Identify o I: Nickel pa	entary information one of the following article inserted bet	: ween positive a			coated area. ive material coated are	

SC	is			
		Page 37 of 37	Report No. SHES	190902342201
		IEC 62133-2		
Clause	Requirement + Test		Result - Remark	Verdict

7.3.9	TABLE: Forced	internal shor	t circuit (cells)			Р
Sa	imple no.	Chamber ambient T (°C)	OCV before test (Vdc)	Particle location ¹⁾	Maximum applied pressure (N)	Results
	Samp	les charged a	at charging ten	nperature upp	per limit ²⁾	
NCM186	50ET-260 (#44)	45	4,15	1	800	Pass
NCM186	50ET-260 (#45)	45	4,15	1	800	Pass
NCM186	50ET-260 (#46)	45	4,16	1	800	Pass
NCM186	50ET-260 (#47)	45	4,15	1	800	Pass
NCM186	50ET-260 (#48)	45	4,16	1	800	Pass
	Samp	les charged a	at charging ten	perature low	ver limit ³⁾	
NCM186	50ET-260 (#49)	0	4,15	1	800	Pass
NCM186	50ET-260 (#50)	0	4,15	1	800	Pass
NCM186	50ET-260 (#51)	0	4,15	1	800	Pass
NCM186	50ET-260 (#52)	0	4,16	1	800	Pass
NCM186	50ET-260 (#53)	0	4,16	1	800	Pass
¹⁾ Identify o 1: Nickel pa	entary information ne of the following: article inserted bet article inserted bet	: ween positive a			coated area. ive material coated are	a.

- No fire or explosion

D.2	TABLE: Internal AC resistance for coin cells N/A					N/A
Sample no. Ambie		Ambient T (°C)	Store time (h)	Resistance Rac (Ω)	Re	sults ¹⁾
Supplementary information: None						

---End report---

Page 1 of 3 Report No.: SHES190902342201

Attachment 1 Photo documentation

INR18650-320

INR18650-350

Page 2 of 3 **Report No.:** SHES190902342201

Attachment 1 Photo documentation

INR18650ET-350

Page 3 of 3 **Report No.:** SHES190902342201

Attachment 1 Photo documentation

NCM18650-260

NCM18650ET-260

--- End of Attachment 1 ---

Attachment 2 Information for safety

Recommendations to equipment manufacturers and battery assemblers

The following represents a typical, but non-exhaustive, list of good advice to be provided by the manufacturer of secondary cells and batteries to equipment manufacturers and battery assemblers.

- a) Do not dismantle, open or shred cells. Batteries should be dismantled only by trained personnel. Multi-cell battery cases should be designed so that they can be opened only with the aid of a tool.
- b) Compartments should be designed to prevent easy access to the batteries by young children.
- c) Do not short-circuit a cell or battery. Do not store cells or batteries haphazardly in a box or drawer where they may short-circuit each other or be short-circuited by conductive materials.
- d) Do not remove a cell or battery from its original packaging until required for use.
- e) Do not expose cells or batteries to heat or fire. Avoid storage in direct sunlight.
- f) Do not subject cells or batteries to mechanical shock.
- g) In the event of a cell leaking, do not allow the liquid to come into contact with the skin or eyes. If contact has been made, wash the affected area with copious amounts of water and seek medical advice.
- h) Equipment should be designed to prohibit the incorrect insertion of cells or batteries and should have clear polarity marks. Always observe the polarity marks on the cell, battery and equipment and ensure correct use.
- i) Do not mix cells of different manufacture, capacity, size or type within a battery.
- j) Seek medical advice immediately if a cell or battery has been swallowed.
- k) Consult the cell or battery manufacturer on the maximum number of cells which may be assembled in a battery and on the safest way in which cells may be connected.
- A dedicated charger should be provided for each equipment. Complete charging instructions should be provided for all secondary cells and batteries offered for sale.
- m) Keep cells and batteries clean and dry.
- n) Wipe the cell or battery terminals with a clean dry cloth if they become dirty.
- Secondary cells and batteries need to be charged before use. Always refer to the cell or battery manufacturer's instructions and use the correct charging procedure.
- p) Do not maintain secondary cells and batteries on charge when not in use.
- q) After extended periods of storage, it may be necessary to charge and discharge the cells or batteries several times to obtain maximum performance.
- r) Retain the original cell and battery literature for future reference.
- s) When disposing of secondary cells or batteries, keep cells or batteries of different electrochemical systems separate from each other.
- Keep small cells and batteries which are considered swallowable out of the reach of children.
- Swallowing may lead to burns, perforation of soft tissue, and death. Severe burns can
 occur within 2 h of ingestion.
- In case of ingestion of a cell or battery, seek medical assistance promptly.

--- End of Attachment 2 ---

Page 1 of 1

Attachment 3 Packaging

--- End of Attachment 3 ---

Page 1 of 6

Attachment 4 Product specification

Specification of INR18650-320

技术参数 Technical Parameters	规格 Speci	fication	
2.1 标称容量	3200mAh (0.2C, 2.50V)	放电)	
Nominal Capacity	3200mAh (0.2C, 2.50V discharge)		
2.2 最小容量	3100mAh (0.2C, 2.50V	放电)	
Minimum Capacity	3100mAh (0.2C, 2.50V	discharge)	
	1.0C, 2.50V 放电 1.0C, 2.50Vdischarge	≥3000mAh	
2.3 倍率容量	2.0C, 2.50V 放电	≥2790mAh	
Rated Capacity	2.0C, 2.50Vdischarge	(90%Capacity of 2.2)	
	3.0C, 2.50V 放电	≥2790mAh	
	3.0C, 2.50Vdischarge	(90%Capacity of 2.2)	
2.4 标称能量	11.52Wh (0.2C, 2.50V)	放电)	
Nominal Energy	11.52Wh (0.2C, 2.50V d	ischarge)	
		L C (H)	
2.5 标称电压	3.60V(0.2C,2.50V 放		
Nominal Voltage	3.60V (0.2C, 2.50V discharge) IE 本		
2.6 标准充电	方法: 恒流恒压		
2.0 标准元电	Method: CC-CV DLG (H)		
Standard Charge	充电电压: 4.20V		
	Charging Voltage: 4.20V		
	充电电流: 0.5C (1600m		
	Charging Current: 0.5C (1600mA)		
	截止电流: 0.01C (32mA)		
	Cut-off Current: 0.01C (32mA)	
2.7 最大充电电流	7 最大充电电流 1.0C (3200mA),不能用作循环寿命		
Maximum Charge Current	1.0C (3200mA) , not for cycle life		
	方法: 恒流		
	Method: CC		
2.8 标准放电	放电终止电压: 2.50V		
Standard Discharge	Discharge Cut-off Voltage: 2.50V		
	放电电流: 0.2C (640mA)		
	Discharging Current: 0.2C (640mA)		
2.9 最大放电电流	3.0C(9600mA),可用于持续放电		
Maximum Discharge Current	3.0C (9600mA) , for continuous discharge		
2.10 重量	45.5.2.0		
Weight	45.5±2.0g		
2.11 使用温度,充电	0~45°C		
Operating Temperature, Charge			

Page 2 of 6

Attachment 4 Product specification

Specification of INR18650-350

技术参数Technical Parameters	规格 Specification		
2.1 标称容量	3500mAh (0.2C, 2.50V 放电)		
Nominal Capacity	3500mAh (0.2C, 2.50V discharge)		
2.2 最小容量	3350mAh (0.2C, 2.50V 放电)		
Minimum Capacity	3350mAh (0.2C, 2.50V	사가 잘 잘 했는 것 같아요.	
	1.0C, 2.50V放电	≥3180mAh	
	1.0C, 2.50Vdischarge	(95%Capacity of 2.2)	
2.3 倍率容量	2.0C, 2.50V放电	≥3015mAh	
Rated Capacity	2.0C+ 2.50Vdischarge	(90%Capacity of 2.2)	
	3.0C, 2.50V放电	>3015mAh	
	3.0C, 2.50Vdischarge	(90%Capacity of 2.2)	
	D	L G (H)	
2.4 标称能量	12.6Wh (0.2C, 2.500)	段电38-14 1	
Nominal Energy	12.6Wh (0.2C, 2.50Va	istharge) 本	
2.5 标称电压			
Nominal Voltage	3.60V (0.2C, 2.50V 放电) 3.60V (0.2C, 2.50V discharge)		
Nominal Voltage		charge.	
	方法: 恒流恒压 Method: CC-CV		
	充电电压: 4.20V		
2.6 标准充电	Charging Voltage: 4.20V		
Standard Charge	充电电流: 0.5C (1750mA)		
	Charging Current: 0.5C (1750mA)		
	截止电流: 0.01C (35mA)		
	Cut-off Current: 0.01C	(35mA)	
2.7 最大充电电流	1.0C(3500mA),不能用	用作循环寿命	
Maximum Charge Current	1.0C (3500mA), not fo	1.0C (3500mA), not for cycle life	
	方法: 恒流		
	Method: CC		
2.8 标准放电	放电终止电压: 2.50V		
Standard Discharge	Discharge Cut-off Voltage	: 2.50V	
	放电电流: 0.2C (700m.		
	Discharging Current: 0.2C (700mA)		
2.9 最大放电电流	3.0C(10500mA),可用于持续放电		
Maximum Discharge Current	3.0C (10500mA), for continuous discharge		
2.10 重量			
Weight	46.0±2.0g		
2.11 使用温度, 充电	DLO	G (H)	
Operating Temperature, Charge	0-45°C 2019-08-14		
operating reinperatures charge	4010-00		

Page 3 of 6

Attachment 4 Product specification

Specification of INR18650-3000

技术参数Technical Parameters	規格 Specifi	規格 Specification		
2.1 标称容量 Nominal Capacity	3000mAh(1.0C, 2.50V放电) 3000mAh(1.0C, 2.50V discharge)			
2.2 最小容量 Minimum Capacity	≥3000mAh (1.0C, 2.50V 放电) ≥3000mAh (1.0C, 2.50Vdischarge)			
2.3 倍率容量	2.0C, 2.50V放电 2.0C, 2.50Vdischarge	≥2700mAh (90% of 2.2)		
Rated Capacity	3.0C, 2.50V放电 3.0C, 2.50Vdischarge	≥2700mAh (90% of 2.2)		
2.3 标称能量 Nominal Energy	10.80Wh(1.0C, 2.50V 放电) 10.80Wh(1.0C, 2.50V discharge)			
2.4 标称电压 Nominal Voltage	3.60V(1.0C, 2.50V放电》正本 3.60V(1.0C, 2.50V放电》正本 3.60V(1.0C, 2.50Vdischarge)(H)			
2.5 标准充电 Standard Charge	方法: 恒流恒压 Method: CC-CV 充电电压: 4.20V Charging Voltage: 4.20V			
	充电电流: 0.5C (1500mA) Charging Current: 0.5C (1500mA) 截止电流: 0.01C (30mA) Cut-off Current: 0.01C (30mA)			
2.6 最大充电电流 Maximum Charge Current	1.0C (3000mA),不能用作循环寿命 1.0C (3000mA), not for cycle life			
2.7 标准放电 Standard Discharge	方法: 恒流 Method: CC 放电终止电压: 2.50V Discharge Cut-off Voltage: 2.50V 放电电流: 1.0C (3000mA) Discharging Current: 1.0C (3000mA)			
2.8 最大放电电流 Maximum Discharge Current	 2.0C (6000mA),可用于持续放电 2.0C (6000mA), for continuous discharge 3C (9000mA),可用于持续放电,不可用于循环 3C (9000mA), for continuous discharge, not for cycle life 			
2.9 重量 Weight	45.5±2.0g			
2.10 使用温度,充电 Operating Temperature, Charge	0~45℃			

Page 4 of 6

Attachment 4 Product specification

Specification of INR18650ET-350

技术参数Technical Parameters 规格 Specification			
2.1 标称容量	3500mAh (0.2C, 2.50V放电)		
Nominal Capacity	3500mAh (0.2C, 2.50V discharge)		
2.2 最小容量	3350mAh (0.2C, 2.50V放电)		
Minimum Capacity	3350mAh (0.2C, 2.50V discharge)		
	1.0C, 2.50V放电 ≥3180mAh		
2.3 倍率容量	1.0C, 2.50Vdischarge (95%Capacity of 2.2)		
Rated Capacity	2.0C, 2.50V放电 ≥3015mAh 2.0C, 2.50Vdischarge (90%Capacity of 2.2)		
2.4 标称能量	D I, G (H) 12.6Wh (0.2C, 2.50V 放电) 2019-08-1 4		
Nominal Energy	2019 -08- 1 4 12.6Wh(0.2C,2.50V discharge) 变 症 止 本		
2.5 标称电压	3.60V (0.2c, 25dy 接电计)		
Nominal Voltage	3.60V (0.2C, 2.50V discharge)		
	方法: 恒流恒压		
	Method: CC-CV		
2.6 标准充电	充电电压: 4.20V		
2.6 标准允电	Charging Voltage: 4.20V 充电电流: 0.5C (1750mA)		
Standard Charge	Charging Current: 0.5C(1750mA)		
	截止电流: 0.01C (35mA)		
	Cut-off Current: 0.01C (35mA)		
2.7 最大充电电流	1.0C (3500mA), 不能用作循环寿命		
Maximum Charge Current	1.0C (3500mA), not for cycle life		
	方法: 恒流		
	Method: CC		
2.8 标准放电	放电终止电压: 2.50V		
Standard Discharge	Discharge Cut-off Voltage: 2.50V		
	放电电流: 0.2C (700mA) Discharging Current: 0.2C (700mA)		
2.9 最大放电电流	2.0C (7000mA), 可用于持续放电		
Maximum Discharge Current	2.0C (7000mA), for continuous discharge		
2.10 重量	16.0.0.0		
Weight	46.0±2.0g		
2.11 使用温度,充电	0.100		
Operating Temperature, Charge	0~45°C		

Page 5 of 6

Attachment 4 Product specification

Specification of NCM18650-260

技术参数 Technical Parameters	规格 Specification		
2.1 标称容量	2600mAh (0.2C, 2.75V 放电)		
Nominal Capacity	2600mAh (0.2C, 2.75V discharge)		
2.2 最小容量	2550mAh (0.2C, 2.75V 放电)		
Minimum Capacity	2550mAh (0.2C, 2.75V discharge)		
	0.5C,2.75V 放电 ≥2500mAh 0.5C,2.75V discharge 98%Capacity of2.2		
	1C,2.75V 放电 ≥2422mAh		
2.3 倍率容量	1C,2.75V discharge 95%Capacity of2.2		
Rated Capacity	2C,2.75V 放电 ≥2295mAh		
	2C,2.75V discharge 90%Capacity df)2.2		
	3C,2.75V 放电 2件2167mAh 1 3C,2.75V discharge 85%Capacity of 2.2_		
2.4 标称能量	9.36Wh (0.2C, 2.75V 放电D L (H)		
Nominal Energy	9.36Wh (0.2C, 2.75V discharge)		
2.5 标称电压	3.60V (0.2C, 2.75V 放电)		
Nominal Voltage	3.60V (0.2C+ 2.75V discharge)		
	方法: 恒流恒压		
	Method: CC-CV		
a o de uto de de	充电电压: 4.20V		
2.6 标准充电	Charging Voltage: 4.20V		
Standard Charge	充电电流: 0.5C (1300mA) Charging Current: 0.5C (1300mA)		
	截止电流: 0.01C (26mA)		
	Cut-off Current: 0.01C (26mA)		
2.7 最大充电电流	1.0C (2600mA), 不能用作循环寿命		
Maximum Charge Current	1.0C (2600mA), not for cycle life		
	方法: 恒流		
2.8 标准放电	Method: CC		
	放电终止电压: 2.75V Discharge Cata Wildows 2.75V		
Standard Discharge	Discharge Cut-off Voltage: 2.75V 放电电流: 0.2C (520mA)		
	Discharging Current: 0.2C (520mA)		
2.9 最大放电电流	3.0C(7800mA),可用于持续放电		
Maximum Discharge Current	3.0C (7800mA), for continuous discharge		
2.10 重量	45.0±2.0g		
Weight	43.0±4.0B		
2.11 使用温度,充电			
Operating Temperature, Charge	0-45°C		

Page 6 of 6

Attachment 4 Product specification

Specification of NCM18650ET-260

技术参数 Technical Parameters	規格 SJ	pecification		
2.1 标称容量	2600mAh (0.2C, 2.75	V 放电)		
Nominal Capacity	2600mAh (0.2C, 2.75	2600mAh (0.2C+ 2.75V discharge)		
2.2 最小容量	2550mAh (0.2C, 2.75	2550mAh (0.2C, 2.75V 放电)		
Minimum Capacity	2550mAh (0.2C+ 2.75V discharge)			
	0.5C,2.75V 放电	≥2500mAh		
	0.5C,2.75V discharge	98%Capacity of2.2		
2.3 倍率容量	1C,2.75V 放电	≥2422mAh		
Rated Capacity	1C,2.75V discharge	95%Capacity of2.2		
	2C,2.75V 放电	≥2295mAh		
	2C,2.75V discharge	90%Capacity of 2.2		
2.4 标称能量	9.36Wh (0.2C, 2.75V	放电)		
Nominal Energy	9.36Wh (0.2C, 2.75V	discharge)		
2.5 标称电压	3.60V (0.2C+ 2.75V 版			
Nominal Voltage	3.60V (0.2C, 2.75V di			
2.6 标准充电	方法: 恒流恒压	DLG(H)		
2.6 你准元电	Method: CC-CV	机密		
Standard Charge	充电电压: 4.20V			
	Charging Voltage: 4.20V			
	充电电流: 0.5C (1300mA)			
	Charging Current: 0.5C (1300mA)			
	截止电流: 0.01C (26mA)			
	Cut-off Current: 0.01C (26mA)			
2.7 最大充电电流	1.0C(2600mA),不能	1.0C (2600mA),不能用作循环寿命		
Maximum Charge Current				
	方法: 恒流			
	Method: CC			
2.8 标准放电	放电终止电压: 2.75V	放电终止电压: 2.75V		
Standard Discharge	Discharge Cut-off Voltage: 2.75V			
	放电电流: 0.2C (520mA)			
	Discharging Current: 0.2C (520mA)			
2.9 最大放电电流	2.0C (5200mA),可用	2.0C (5200mA),可用于持续放电		
Maximum Discharge Current	2.0C (5200mA), for c	2.0C (5200mA), for continuous discharge		
2.10 重量				
Weight	45.0±2.0g	45.0±2.0g		
2.11 使用温度,充电				
Operating Temperature, Charge	0~45°C			

Attachment 5 ISO 9001 certificate

- - - End of Attachment 5 - - -